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In  an attempt to explain the failure of the various pure homogeneous strain 
experiments to reach equilibrium (and consequently to support the contention 
of Townsend of an equilibrium structure of the Reynolds stress dependent only 
on geometry), the nature of the general Reynolds stress-mean velocity relation 
is examined. It is shown that if homogeneous flows become asymptotically 
independent of initial conditions, and if the Reynolds stress bearing structure 
can be characterized by a single time scale (i.e.-at sufficiently high Reynolds 
number) then these flows behave like classical non-linear viscoelastic media, 
with the Reynolds stress structure dependent on the (strain-rate) (time scale) 
product. Thus, the existence of an equilibrium structure implies the existence 
of an equilibrium time scale and a universal value of the product. The ideas 
permitting Reynolds stress and mean velocity to be related are applied to the 
dissipative structure in homogeneous flows, and it is found that in such flow 
the time scale never ceases to grow, so that these flows can never reach an equili- 
brium structure. With the aid of an ad-hoc assumption these flows are examined in 
some detail, and the results of experiments are predicted with considerable accur- 
acy. It is suggested that (inhomogeneous) flows having an equilibrium time 
scale may, in the homogeneous limit, be expected to display a universal struc- 
ture. The small departure from universality induced by the large eddies associated 
with inhomogeneity may be adequately predicted by this same ad-hoc model. 
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1. Introduction 
I n  1956 Townsend suggested that turbulence in energetic equilibrium had a 

structure dependent only on the geometry of the (homogeneous, steady) strain 
rate field. A plane homogeneous pure strain experiment (Townsend 1954) 
appeared to support the contention of an equilibrium structure, although the 
apparent approach to equilibrium was so close to the end of the duct as to cause 
suspicion. I n  1967 MarBclial repeated Townsend’s ( 1  954) experiment, but in 
an extended duct, and in 1968 Tucker and Reynolds did the same independently. 
Both obtained a higher degree of anisotropy than Townsend, with the same sus- 
picious levelling-off just before the end of the duct. These experiments placed in 
question the concept of an asymptotic structure dependent only on geometry, 
although this idea appears to be consistent with observations in inhomogeneous 
shear flows. 

We will attempt to  answer the question of whether homogeneous turbulence 
undergoing deformation can ever be expected to attain an equilibrium structure. 
We will approach this question by asking first (in appendix A) whether and how 
the Reynolds stress and other statistical functions of the fluctuating velocity 
field can be considered to  be functionals of the mean velocity field. Using the 
results of appendix A, for turbulence characterized by a single time scale, the 
Reynolds stress is seen to  be self-preserving. The answer to our question regard- 
ing an equilibrium structure is thus seen to depend on the evolution of the time 
scale: if and only if the time scale reaches an equilibrium value, the structure 
will reach equilibrium. The results of appendix A are now applied to the dissipative 
structures, leading to the result that the time scale grows continually, so that 
no equilibrium structure is achieved. Finally, a model is constructed on the basis 
of appendix A (very similar to  one proposed on somewhat different grounds by 
Rotta (1951)), which is used to  predict with considerable qualitative success 
the results of the three homogeneous pure strain experiments. 

As a bonus, the considerations of appendix A indicate that turbulence under- 
going homogeneous deformation behaves like a classical non-linear non- 
Newtonian medium, and in particular the inequality of the normal components 
of the Reynolds stress in the plane of deformation is seen t o  be direct evidence 
of viscoelastic behaviour. This has frequently been hinted a t  (see Rivlin (1957) 
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and Liepmann (1961)) who both suggested that the secondary motions or large 
eddy structure of turbulent shear flows could be explained by the validity of some 
form of non-Newtonian non-linear constitutive relation), but previously was 
supported only by linearized calculations for short times or small strains (see, for 
example, Moffatt (1965) and Crow (1968)) which displayed linear elastic res- 
ponse, and by a demonstration that such response could qualitatively explain 
phenomena observed at  the turbulent-non-turbulent interface (Townsend 1966). 

2. Self preservation 
From appendix A we find that in either homogeneous shear or pure homo- 

geneous strain the Reynolds stress can be written in terms of invariant functions 
(respectively four and three) of the strain rate (in the former case because the 
vorticity is proportional to the strain rate). As discussed in §A 3, this must be 
non-dimensionalized by a time scale provided by initial conditions (since there 
are no boundary conditions in a homogeneous flow); the invariant functions 
will in addition be functions of the ratios of the various time and length scales 
determined by the initial conditions, if there are others, as well as the Reynolds 
number. 

Let us consider the case of the evolution of turbulence characterized by a 
single time and length scale, not an unreasonable possibility sufficiently long after 
initiation. To achieve this we must assume the Reynolds number to be sufficiently 
large so that it has no direct influence on the Reynolds stress. We will then have 
something like 

From $A 3 we might at  first expect (2.1) to be a functional of the development 
of q2/2c; if only a single scale is relevant, however, this development is governed 
also by q2/2e, so that given the present value, the development is universal. 

From (2.1) it  is evident that Townsend's conjecture of an equilibrium structure 
is completely dependent on the time scale attaining an equilibrium (and uni- 
versal) value. This makes physical sense : one would expect in a flow in equilibrium 
that all time scales would be proportional. Hence, we must examine the evolution 
of the time scale. 

3. Evolution of the time scale 

writing B = Y U ~ , ~ U ~ , ~ ,  manipulations with the equations of motion yield 
Consider a homogeneous turbulent flow with homogeneous deformation. Then, 

(3.1) 
6 v' q , j U i , k u j , k +  U j , k ~ ~ + u i , k u i , j U j , k  = -vui,k3'ui,kj. 

Now, we may apply the reasoning of appendix A to the various terms in (3.1); 

u i , ku j , k  = &j{c(t/t'), Q(t/t '),  RLE}, t' < t, (3.2) 
for example, 

where no spatial dependence has been indicated, since the deformation is 
homogeneous. We expect a time scale characteristic of the dissipative range of 
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wave-numbers to be J ( v / e ) ,  and we expect (3 .2 )  also to be a function of Reynolds 
number RLc. Whereas the time scale of the Reynolds stress may always be 
expected to be of the order of the inverse of the mean strain rate, this is not true 
of the time scale of the dissipation. The ratio of the two time scales, in fact, is of 
order of Rtc ,  so that we expect the time scale J ( v / e )  to become shorter and shorter 
relative to that of the mean motion as the Reynolds number increases. Thus, 
we have some justification for carrying out an expansion similar to that used by 
Coleman & No11 ( 1 9 6 l ) . t  This may be done in many ways, but perhaps the 
easiest is to introduce a ‘retarded history’ by means of a coefficient 0 < a < 1;  

ui,kuj,k = 9&{C(t/t-a(t-tf)), Q(t / t -a( t - t ’ ) ) ,  RLe}, t- t ‘  > 0 (3 .3 )  

and we may expand in a series in a, keeping only the leading terms (implying 
that the X J ( v / e )  < 1 ) .  Thus 

- €  
Ui,kUj,k = - ( $ j + / 3 J ( v / E ) & j +  ...). 

~ €4 
U&kjU{,kj = 5 ( A  + OCS”/4), 

.____ €4 
V 4  

where O(S2)  is taken to include not only tr(aC/at’)~,=,, but also tr(a2C/X2) Ie*, 
(aQ/at’)  - (aQ/at’)le,, etc. 

(3 .4 )  3v 

In  an exactly similar way we can write 

(3 .5 )  1 V Z  

u. i ,kui , juj ,k  = - ( B  O(S2V/€)) ,  

The quantities A ,  B are taken to be functions of 

Substituting the expressions (3.4) into (3.1) we can write 

6 = - 2(A + B ) & / V ~  + O ( S 2 v k & ) .  (3 -6 )  
The remainder is of order (presuming an equilibrium value estimated from Rose 

E P B j  = (B,,(A +B) ‘ 
Presuming that R,,(A + B )  -too, RLt-foo, we may neglect the remainder. In  
general Rj-, will be a function of time; this is not inconsistent with the forms 
chosen in ( 3 . 4 )  and (3 .5 ) ,  since these are expansions about a state of instantaneous 
response to  changing conditions-infinitesimal time constant. Hence, ( A  + B)  
will in general be a function of time. In  grid turbulence, however, which is one 
of the flows described by (3 .6 ) ,  R,, is constant. Let us solve (3 .6 )  (neglecting the 
remainder) for ( A  + B)  constant. We obtain 

l l  ( 3 .7 )  
(1966) X q 2 / E  - 2/10) S 2 V  

E = v / ( A  + B)’(t - (3.8) 
t In  Lumley (1967) it was shown by a similar series oxpansion that tho correction for 

inhomogeneity is of higher order than that for time dependence. There, however, the 
dependence on SL was neglected. If the dependence on S2 is included, it is not difficult 
to show that the first-order time term is unchanged, the second-order time term is increased 
by a term quadratic in the vorticity, and a term proportional to the vorticity gradient 
appears, bi-linear in space and time. 
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where e -+ co at to. Since in this flow - q 2  = 26, we obtain 

q2 = 2v/(A + B)2( t  - to), (3.9) 

so that 
4 

R -  
Lr - 9(A + B)2 (3.10) 

or A+B = ~ R Z ? .  (3.11) 

Since the forms (3.5) must be independent of the presence or absence of mean 
shear, (3.11) holds also where R,, is not constant. Now we may evaluate the 
remainder term in (3.6) as O(R&, so that our neglect was justified. The conclu- 
sion (3.11) corresponds to the concept of an ‘equilibrium range’ (Batchelor 
1956); that is, we anticipate that ( i / s ) J (v / s )  -+ 0 as RLE+co, so that the rate of 
change of the dissipating region is small, measured in its own time scales. 

Since R,, has always the same sign, we may conclude that in a homogeneous 
turbulence E will continue to decay whether there is a mean strain rate or not, 
if the Reynolds number is high enough; evidently E is fixed in practical flows by 
spatial transport induced by inhomogeneity. Using (3.1 1) we may rewrite (3.6) 

(3.12) 
as 

the same form as in grid turbulence. The rate of change of the time scale q2/2e 
may be calculated as (setting T = q2/2e) 

= -4€:/q2, 

PIT = Q2/q2 - i.1. = q2/q2 + 4s/q2. 

From the equations of motion, we have 

(3.13) 

(3.14) 

so that = Z ( F -  Si,R,)Iq2. (3.15) 

Since SilRij < 0 virtually always, and 6 2 0, the time scale continually increases; 
the greater the production, the greater the rate of increase. Since T is monotone 
increasing in t ,  any function o f t  may be expressed as a function of T, justifying 
the concept embodied in (2.1). 

Consequently, we do not expect homogeneous flows to reach an equilibrium 
structure, but to evolve monotonously as the time scale increases. 

4. A model for the development of Reynolds stress in homogeneous 
flows 

We now have a qualitative conclusion, asymptotically valid at  large Reynolds 
number: that turbulence under homogeneous deformation behaves like a classical 
non-linear viscoelastic fluid, but having a monotone increasing time scale, so 
that no equilibrium structure can be achieved. This conclusion is relatively 
assumption free; we have used only the assumption that detailed initial con- 
ditions will be forgotten. Aside from that, we have used only group-theoretical 
arguments. To obtain quantitative results for comparison with experiment, 
we must (since we do not have a mechanism for solving the equations exactly) 

27 F L M  41 
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make a simplifying assumption consistent with the qualitative behaviour that 
we have found. 

Let us begin in the usual way, by writing the equations for the Reynolds 
stress tensor in a homogeneous deformation as (with uii .  = Rij) 

Both terms on the right-hand side present difficulties. Let us dispose ofthe second 
one first. From (3.4) we can write 

where the higher order terms are of order u2S, where u is the Kolmogorov velocity, 
and X is the strain rate. For high enough Reynolds number, then, these may be 
neglected relative to the second and third terms on the left-hand side. 

The first term on the right-hand side presents greater difficulties. It represents 
transfer of energy among the components. On a somewhat ad-hoc basis,? we 
propose the following 

( 4 . 3 )  

Equation (4 .3 )  was first proposed by Rotta (1951) for a portion of the Reynolds 
stress (that part dependent on triple correlations; the other part was expressed 
as a series in successive derivatives of the mean velocity profile). We propose 
( 4 . 3 )  on the following grounds: through equation (4 .1 )  and (4.2), the symmetric 
part of the pressure gradient-velocity correlation could be written as a functional 
of the history of the Reynolds stress (the equations of mean motion being used to 
replace the mean velocity gradient by dependence on the Reynolds stress), 
with all the reservations regarding initial and boundary conditions that are 
expressed in appendix A. If now we imagine that the time scale characteristic of 
the pressure gradient-velocity correlation is short relative to that for the change 
of the Reynolds stress (necessarily in intrinsic co-ordinates, and hence the same 
as that of the strain rate), then we may expand; the leading term depends only 
on the present value of the Reynolds stress, and hence must have the same 
eigenvectors. The pressure gradient-velocity correlation has only two in- 
dependent eigenvalues in a three-dimensional homogeneous flow; in a two- 
dimensional one, only one. In  a two-dimensional flow, then, (4 .3 )  would be 
exact (granted the short time scale expansion). In a quasi-two-dimensional flow 
it may not be too bad. 

We are assuming, of course, that T > 0,  since if R,, < q2 /3 ,  we want 
- Z/pcpJ  > 0 ;  T is the time constant associated with the return to isotropy. 
Equation (4 .3 )  can be read as stating that the rate at  which energy is fed to a 

t For experimental support, see the paper by Corrsin in this Symposium. This assump- 
tion is not inconsistent with Crow (1968) where it is shown for weak strains that part of 
the pressure field arises from interaction of the mean field with the turbulence. To the 
order of Crow's analysis, both sides of (4.3) will have the eigenvectors of the strain rate 
field. A developed turbulence will acquire an anisotropy determined by (but not neces- 
sarily the same as tha6 of  ) the mean field, so that either one may be taken as argument in 
expressing the anisotropy of another quantity in the same flow. 
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component depends on the energy deficit in that component below the mean 
energy level. This is a sort of stossxahlansatx, like that of classical statistical 
mechanics. Since it specifies rates dependent on present conditions, and hence 
implies Markovian behaviour, it is surely wrong (a reflexion of the fact that our 
time scale expansion cannot possibly be justified). The fact that it produces 
equations very similar to those governing the behaviour of macromolecules in 
dilute solution is evidence of its family relationship to the assumptions of 
statistical mechanics. It may be regarded as the equivalent for the pressure- 
velocity correlation of the eddy viscosity approximation for the Reynolds stress. 

We would expect to meet with difficulty in applying (4 .3 )  in a homogeneous 
shear since the principal axes would not be expected to be the same. In a pure 
homogeneous strain, the axes must be the same, so we would expect the approxi- 
mation to be better; difficulties, if any, would arise only from the assumption of 
linearity. 

We may examine the behaviour of (4 .3 )  in the time-dependent case with no 
mean flow: Aik + ( l/T)(Rik - q2Sik/3) = - 2eSik/3. (4 .4 )  

Forming the equation for q2, q2 = - 2e, and subtracting, we have 

a(Rik - q2&/3)/at + (l/!P)(Rik - q2Si,/3) = 0. 

(1 /q2)@q2/d t )  = - 2s/q2, 

( R i k  - q2$k/3)-l d(Rik - q2&/3)/dt = - 1/T 

( 4 . 5 )  

Comparing the time scale for return to isotropy with that for decay, we have 

(4 .6 )  

(no sum on indices). We know that the return to isotropy is faster than the decay 
-hence we must have 

1/T > 2s/q2. (4.7) 

Let us set 2sT/q2  = p < 1, where p is a constant. Using (3 .12)  for the evolution 
of E ,  we have 

91s = -4s/q2, (3 .12)  

from which we obtain in this shear free case, T = To+pt. Substituting in (4 .6 )  
and solving, we obtain 

where [ I,, quantities are evaluated at t = 0. This behaviour, in which the time 
constant for the return to isotropy becomes progressively longer as time goes on, 
is qualitatively consistent with observation. Virtually the only data on the 
return to isotropy is contained in the experiment of Tucker & Reynolds (1968)  
(which displayed an encouraging return to isotropy, contrary to that of Grant 
(1958) ) .  There the anisotropy is presented in terms of K = (R22 - Rll)/(Rz2 + Rll).  
According to (4 .8 )  and (4.6) we obtain 

K = Ko(1+ ~ t / T o ) l - l ' ~ / { 2 q % / 3 ( R , ,  + R22)O + [1  - 2q%/3(Rll+ R2Z)Ol 

x ( 1  +/3t/To)l-11P}. (4 .9 )  
27-2 
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For initial conditions we have, estimating from Tucker & Reynolds graphs, 

} (4.10) 
2q;/3(Rl1 + R,,), = 1.05, KO = 0.62, 

To = 0.828 J? see. 

dKo/dt = - 2.46 see-l, 

The figure for To is very difficult to determine directly from the decay data; the 
value given was estimated from (3.12) by integrating the values for q2 given by 
Tucker & Reynolds. Using the values (4.10)) we obtain for P 

P = 0.242. (4.11) 

If we now use these same values to obtain the value 0.292 seconds later, read 
from Tucker & Reynolds graphs as 0.32, we obtain 0-234, which is too low. We 
must conclude that either the approximation of P = const. (essentially a simi- 
larity assumption, that all time scales are proportional) is not valid for substantial 
changes in time scale, or that the assumption of linearity in (4.3) is poor. 

5. Homogeneous shear 

for a steady homogeneous shear. Introducing a new time variable defined by 
Returning now to the more general case, let us consider the equations (4.1) 

&/at = 2e/pqz, (5.1) 

we find immediately from (3.12) that e = s,e-2pT, and the equations (4.1) become 
(where ( )' = a( )/&, we have presumed R,, = R,, = 0 initially, and we have 
used (4.3)): 

R;i + R11 = ufPq2R12/& + ( 1  - P)q2/3, 

(5 .2 )  i Riz + R,, = (1 - P)P2/3, 
R;,+R,, = (1  -~)q213, 
R;2 + R12 = - U'Pq2R2,/2e. 

The exact solution of these may be written down, but there is hardly any point 
in it, since the solution depends implictly on q2; an equation for q2 may be ob- 
tained by adding together those for Rll, R,, and R,,, but it cannot be solved 
explicitly. It is more convenient to define 

e = vpq2/2€, 9ii = Ri,/q2 
and rewrite (5.2) as 

(5.31 

d ~ l l l d ~  = W 9 1 2 ( 9 1 1 -  1) + (P- 1)(911-  Q ) I / [ P B  - 2029121, 
d922/de = [2892&12+ (P- 1 N 9 2 2  - +)l/[P6 - 2e291,1, 
d9yJdO = [ - 6 9 2 2  + 9 1 2 ( P -  1 + 209?12)]/[pe- 202912]. 

We are particularly interested in comparing our predicted values with those of 
Rose (1966)) an experimental realization of this flow. To this end, equations 
(5.4) were solved by the Runge-Kutta technique on the IBM 360/67, with initial 
conditions R,, = R,, = R,, = 8, R,, = 0 at 0 = 0.24, using the value P = 0-242. 
The results are shown in figure 1, together with the results of Rose, read from 
his faired curves and calculated to place them in this form. The values of 8 
needed to calculate 0 were obtained by integrating equations (3.12), using Rose's 
values of q2. 
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The general agreement is excellent. The value of 8 obtained from equation 
(3.12) agrees, near the end of the duct, with the value of 8 computed there (at an 
extremum of 42) on the basis of equilibrium. Plotted in this form, a distinct 
change in curvature is evident in all the curves at about eight duct-heights (the 
second point from the right) which may indicate either the approach of the end 
of the duct (at ten duct heights) or the beginning of secondary motions. 

Because of the clearly different initial conditions, it is not reasonable to com- 
pare the curves quantitatively before roughly 8 = 0.4; because of the anamolous 
behaviour, it is not reasonable to compare them after 8 N 0.6. Within this range, 
the agreement appears to be within 20 yo for the Reynolds stress, and consider- 
ably better for the intensities. 

0.3 

0.3 

N . br 
:3 

a; 
0.2 

0.1 

I I I I I I I r I I 0.5 r 

. 

. 

. 

I' I / I  I I I I I I I I 1 
O:, 0.7 0 4  0.6 0.X I 4 I .z 

0 

FIGURE 1. Plot of results of Rose verBu8 8. Curves without experimental points are com- 
putations of Rii/qa from the model described in the text with Rll/q2 = Rzz/q2 = R,,/q2 = +, 
R&' = 0 ah 8 = 0.24. 0, R111q2; $3, RzaIq'; 6, Rsa/q2; by R,zIqa- 

6. Pure strain 
Emboldened by our success in predicting the structure of a homogeneous 

shear, let us try to predict the evolution of a pure strain. For a two-dimensional 
strain rate, the equations are 
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These are more difficult to solve than the corresponding ones for a homogeneous 
shear, even though uncoupled, because of the way in which 0 appears. Since we 
expect 8 to  be monotone, we can replace the independent variable by 0, and change 
to the dependent variables K = (RZ2 - R,,)/(RS2 + R,,), and W = 2g2/3(R,,+ R,,). 
The equations become 

} (6.2) 
d ~ p s  = [ e ( i - ~ 2 ) - ( 1 - ~ ) ~ ~ 1 / 8 ( ~ + 2 e ~ / 3 ~ ) ,  
awpe = [KO(,-  w)+(i-p)w(i-  w ) l / o ( p + 2 0 ~ / 3 ~ ) .  

These were solved by the Runge-Kutta method on an IBM 360167, to give the 
curves shown in figure 2. The initial conditions were K = 0,  W = 1 at 0 = 0 ,  
0.2, 0.4 and 0.6. Solutions were obtained for values of p lying between 0.16 
and 0.32 by steps of 0.02. The curve shown is for p = 0.24; in the asymptotic 
region (say for 0 > 1.8) the variation in p affected the third significant figure 
only. 

"0 04 0.8 I .2. 1.6 3.0 3 4  2.8 

6' 

FIGURE 2. Plot of results of Townsend, Tucker & Reynolds and Markchal wer.sz4.s 6'. 
Curves without experimental points are computations of K from the model described in the 
text, with K = 0 initially at 6' = 0, 0.2, 0.4, 0.6. Q, Townsend ($  inch); 0, Markchal; 
b , Tucker & Reynolds. 

7. Discussion and Reynolds number effects 
Also shown on figure 2 are the curves obtained from the experiments of 

Townsend (1954), Mardchal (1967) and Tucker & Reynolds (1968). In each 
case the independent variable was obtained by integrating equation (3.12) 
using the measured values of q2. 

The three experimental curves appear to be approaching a single asymptotic 
curve when plotted in this way, as predicted by (2.1), if one ignores the drop-off 
in each case associated with reduction of strain rate caused by approach of the 
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end of the duct. The general shape of the theoretical curve is very similar to the 
experimental ones, so that we may conclude that the reasoning presented here is 
qualitatively correct: that the Reynolds stress is similar in a turbulent time scale, 
and that that scale continually evolves, so that the Reynolds stress does also. 

It is disappointing that the theoretical curve does not agree quantitatively 
with the experiments. We have made two basic assumptions: our assumption 
relating the pressure-velocity correlation to the Reynolds stress, and the assump- 
tion of high Reynolds number relative to the structure of the dissipating region. 
The good agreement with Rose’s experiment leads one to believe that the assump- 
tion of alignment of principal axes is satisfactory. The anisotropy in the pure 
strain experiment is not significantly greater than that in Rose’s experiment, 
so that the assumption of linearity does not appear to be suspect. The insensi- 
tivity to the value of /3 makes it appear unlikely that our choice of value for p, 
or even the assumption of its constancy, is at  fault. Hence, we can tentatively 
eliminate the pressure-velocity correlation assumption as a possible cause. 
In  fact, as we have seen from our prediction of the return to isotropy, if any- 
thing our assumption predicts too fast a return to isotropy, whereas to reduce the 
predicted value of K would require an even greater rate. 

The other assumption has to do with the influence of the strain rate on the 
structure of the dissipative region, as a function of Reynolds number. This 
influence is proportional to RE? according to (3.6). For the various experiments 
the value of R% is as follows: 

Townsend 6.6 
Tucker & Reynolds 28 
Rose 40 
Markcha1 60 

A crude estimate indicates that one would expect a reduction in the value of K 
in each case (from the infinite Reynolds number limit) by roughly 20 %, 4 yo, 
3 yo and 2 %. Our excellent agreement with Rose’s experiment is thus explained, 
but the lack of agreement with the pure strain experiments is not. If one examines 
the growth rate of 0, which was measured by Townsend (1954), Rose (1966) and 
Marbchal (1967), we estimate that the additional growth rate due to production 
is reduced in each case by (respectively) 127 %, 30 %, 21 % and 14 yo. Qualitative 
comparison of the predicted and measured values of 19 indicates that these 
estimates are reasonable;? from Townsend’s measurements, one can see that 
the growth rate of 0 actually begins to fall below the strain-free decay curve, in 
agreement with our estimate. Although true values of 0 apparently may be 
substantially smaller than our estimate, Reynolds number effects will evidently 
not reduce the value of K sufficiently in the asymptotic region to explain the dis- 
agreement between Marbchal‘s experiment in particular, and our prediction.$ 

t Quantitative comparison is difficult. For example, 8 estimated from measured micro- 
scales in Rose’s experiment, and 8 estimated from q2 using (3.12) differ by nearly a factor 
of four; those estimated from p2 agree with the value calculated at an equilibrium point. 

These Reynolds number effects do provide the possibility, as suggested by Townsend 
(1954), of attaining an equilibrium, but the values of 8 and K would depend on Reynolds 
number, 8 - Rt,. 
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One final possibility suggests itself; that the experiments, and not the cal- 
culation, are in error. For this to be the case in three different experiments would 
require a systematic failure of the experiments to be what they appear, for some 
inherent reason. One possible reason is the presence of secondary motion: if a 
large secondary motion existed, flowing from the contracting walls to the expand- 
ing walls, the core of the flow could well experience a strain rate consistently 
less than that dictated by the wall geometry, without the mean velocity on the 
axis being affected. None of these experiments reported measurements which 
would preclude such a secondary motion. 

8. Conclusions 
We can conclude that turbulence under homogeneous deformation behaves 

like a classical non-linear viscoelastic fluid, but having a monotone increasing 
time scale, so that no equilibrium structure can be achieved. A simple model 
predicts behaviour well quantitatively in homogeneous shear, and qualitatively 
in pure strain. The failure to predict quantitatively in pure strain may be due to 
the presence of undetected secondary motions. 

What can we say about real flows, which are in equilibrium, but which are not 
homogeneous? In a real flow, the dissipation is maintained at a constant value 
by spatial transport, so that the time scale does not evolve if the energy is con- 
stant. We cannot apply (2.1) directly to such a flow, since the turbulence scales 
are of the order of the scales of the mean motion, and hence the effects of in- 
homogeneity are strong. If, however, the big eddies are removed as suggested by 
Townsend (1956) (see also Lumley 1965), then the remaining turbulence may 
be of a scale small enough to permit the application of (2.1). We would then con- 
clude, with Townsend, that the structure should be universal, since the time 
scale is constant and bears a universal ratio to the time scale of the mean motion. 
(We recall that in a flow truly in equilibrium, we expect all time scales to be 
proportional with universal constants.) 

The qualified success of our model suggests that it may have broader applic- 
ability. In  particular, it may be useful to predict the small changes in Reynolds 
stress caused by the imposition of secondary motions (big eddies) on the basic 
mean motion. As such, it has the desirable property of displaying viscoelastic 
behaviour, as Townsend (1966) has concluded is necessary. 

I wish to thank my colleague Dr H. Tennekes, for many helpful discussions 
of these ideas extending over a period of several years. This work was supported 
in part by the U.S. National Science Foundation under grant no. GA-1019. 

Appendix A. The possibility of a constitutive relation 
A l .  The injluence of boundary and initial conditions 

Modern rational mechanics adopts the following philosophical position toward 
constitutive relations: if they must be determined phenomenologically, they 
must at least satisfy certain general principles of symmetry, invariance and so 
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forth. I n  this way a general structure is obtained, to which the phenomenological 
law must conform. Having such a general structure, it is often possible to predict 
the stress in one flow from another of the same class, but with a different geometry. 
By comparison of the general structures implied by requiring satisfaction of 
different principles, it is often possible to identify causes in experimental results. 
These remarks all appear to be relevant to  the turbulence problem. 

We will attempt to apply the reasoning of rational mechanics to the problem 
of relating the Reynolds stress to the mean velocity field in turbulent motion, 
the analogue of the classical problem of the constitutive relation. It should be 
borne in mind, however, that exactly the same analysis can be applied to the 
problem of relating any other statistical function of the fluctuating velocity 
field to the mean motion, such as the quantity Ki; the only difference is in 
the selection of the relevant time and length scales (see $A 3). 

The reasoning in this section is an outgrowth of Lumley (1967b)) and super- 
cedes that paper, primarily due to the material in §A 2. 

Usually, when one determines a constitutive relation phenomenologically, 
one does not have access to the dynamical equations which provide a detailed 
description of the microstructure, the behaviour of which is reflected in the 
constitutive relation. In  turbulence we are fortunate in having access to these 
equations, although we cannot solve them. Thus, in any flow, one may write 

- -  
zii+ui,ju, + QUj+ u.i,juj-T&izi = - ( l / p ) P .  ,a + vu i,jj, ui,i = 0 (A 1) 

which, for specified Rii = w., a(x, t )  and boundary and initial conditions may, 
in principle, be solved for u(x, t ) .  We may expect something like 

ui(x, t )  = &(fi(x+E, t’)R, (x +5, t’)}, 2 0, t’ 6 t ,  (A 2) 

where 9 is a functional depending on the values of and R everywhere and at 
all earlier times, and on the boundary and initial conditions. 

One may imagine forming R, which would give one an implicit equation for 
R; one could then solve this by iteration. Having faith that the process would 
converge, this would lead to 

Rij(X, t )  = qj(o(x + 5, f)}, 151 2 0, t’ < t ,  (A 3) 

dependent also on boundary and initial conditions. 
The question of boundary and initial conditions is rather serious, since we 

cannot hope for anything like a constitutive relation so long as there is dependence 
on the details of these conditions. From experience with turbulent flows, however, 
it is equally clear that we cannot avoid some dependence on these conditions: 
thus, the presence of a boundary determines the shear velocity, a scaling para- 
meter throughout the boundary layer. We must allow the boundary and initial 
conditions to set the levels of some of the scales in the flow. This is similar to 
St Venant’s principle in solid mechanics: sufficiently far from a boundary only 
integral properties of the detailed boundary conditions are important. Although 
it has not been proved in turbulence, we will invoke such a principle. We will 
assume that sufficiently far from the boundary or after initiation, we may deter- 
mine the structure of Rijcompletely by giving U(x, t )  for all x and all earlier t ,  



426 J .  L. Lumley 

the initial and boundary conditions serving at  most to set the levels of (scalar) 
time and length scales. It is evident that close to the boundary this is not possible, 
since for example, the vanishing there (and outside) of U does not entail the 
vanishing of u . 

Let a length- and time-scale characteristic of the turbulence be given by L, 
tp.  Let y be the distance to the nearest boundary, and t, a time characteristic of 
the development of the flow. Then, in order to consider the possibility of a 
constitutive relation, we require that t, > tp  and L < y. The second requirement 
does not arise in boundary-free shear flows, such as jets, wakes and shear layers- 
here one would in principle apply to the solution of (A 1) not a boundary con- 
dition but some restriction on behaviour at infinity, such as requiring IuI -+ 0 
as I X I  + co if I qj \  + 0. Thus, one can imagine in a boundary-free shear flow that 
specification of U everywhere, for t, & tp,  could, through a universal functional, 
specify R. 

Following Townsend (1956) but making use of the results of the body of the 
paper, we can define 

t, = 0-242 q2dy/J+* ( - 2uGau/dy)dy, 
--m -a3 

where 1, is the lateral scale of the flow and Dm is the average mean velocity over 
the flow section. Then, using the values given by Townsend, modified to con- 
form to appendix A, we have for the ratio tJt, the values 0.058 for the two- 
dimensional wake and circular jet, and 0.11 for the shear layer. Thus, all these 
flows appear to meet our requirements. Measurements are difficult to discover 
for other flows but calculations on a similarity basis indicate that a plane jet 
might be expected to have a value of tJt, N 0.12, an axisymmetric wake 
about 0.041, a two-dimensional self-propelled wake 0.03 and an axisymmetric 
self-propelled wake 0.024. 

We can conclude that in the classical boundary-free parallel flows, at  least, 
it is possible to have a relation such as (A 3), in which the functional is universal. 
In flows near boundaries we never observe L << y: can anything be done about 
these flows and flows which are developing too rapidly? 

This, of course, immediately calls to mind Townsend’s (1956) big eddy concept. 
Perhaps if one were to decompose the flow into large-scale motions, to be treated 
deterministically, and small-scale ones, to be treated statistically, one could apply 
a constitutive relation concept to the small-scale motion. If the decomposition 
is carried out on a rational basis (Lumley 1967a), it is possible to show (Lumley 
1970) that something like 20-50 yo of the energy will be contained in the first 
mode, or ‘large eddy’. Since the remaining small-scale motion will have the same 
dissipation, we may expect that tp/td will be reduced to 0.8-0.5 of the value for 
the flow as a whole. This is unlikely to be sufficient to help a flow in trouble due 
t o  too-rapid development. As far as length scales are concerned, such a decom- 
position seems unlikely to produce a reduction by a factor significantly greater 
than that for the time scales. Thus we may have to exclude flows near boundaries 
also. Scales in regions well removed from the boundary, in flows with boundaries, 
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are often small enough to meet our requirements (at least marginally) so that 
one would expect to be able to describe the Reynolds stress in the outer portion 
of a boundary layer, for example, by a universal functional dependent only on 
the mean velocity distribution and the shear velocity, but this would be in- 
adequate in the wall region. This is no more than a recognition that the outer 
portion of the boundary layer is wake-like (Coles 1956). Thus, it  seems unlikely 
that any sort of constitutive relation could apply to rapidly developing flows 
or flows near boundaries, and we will exclude such flows from consideration in 
what follows. 

A 2. Determinism and material indifference 

Classically, constitutive relations for materials are required to satisfy two prin- 
ciples (Truesdell 1961): The principle of determinism, consisting of two basic 
restrictions-that the stress is determined by the past only, and that it is deter- 
mined by the motion in an arbitrarily small neighbourhood of the material 
point in question. The second principle is that of material indifference: that 
two motions differing only by arbitrary time-dependent rigid motions must 
produce the same stress, taking proper account of the transformation of co- 
ordinates. 

With regard to the principle of determinism, we must surely keep the half that 
says that the present is determined by the past. Just as surely, however, we 
must discard the half that restricts the causes of stress at  a point to an arbit- 
rarily small neighbourhood of that point. All experimental evidence indicates 
that Reynolds stress (or any other mean quantity in a turbulent flow) is deter- 
mined by a neighbourhood with a radius of the order of an integral scale. The 
loss of this half of the principle to determinism does not appear to be serious, 
however. 

The principle of material indifference raises more serious questions. Truesdell 
(1961) illustrates the principle by pointing out that we expect Hooke’s law 
governing the elongation of a spring in response to a force to be unchanged by the 
spring being placed on a rotating table. There appears to be a great deal of 
confusion regarding this principle in the literature and it is sometimes stated as 
though it were a universal truth, which it clearly is not. Consider, for example, 
a classical hard-sphere gas in a steadily rotating frame rotating with angular 
velocity 8 about a fixed axis. Consider orthogonal velocities u1 and u2 in a plane 
perpendicular to the axis of rotation. If a mean free time is given by Alc (where 
A is the mean free path, and c the r.m.s. velocity) then the Coriolis acceleration 
will induce velocities 2 8  x uhlc, so that to first order the velocity is u + 2 8  x uA/c. 
If the original velocity field (without rotation) u was uncorrelated (we are in 
principal axes of the stress tensor in the absence of rotation), then the off- 
diagonal term induced by the rotation is u E  = (2OA/c)(zc2,-2). The intensity 
difference is u:-ui = - v S  = -AcS, where v is the kinematic viscosity and S 
the strain rate producing the intensity difference. Finally transforming to  new 
principal axes, the (principal) intensity difference is - AcS[l+ (~QA/c )~] ,  so 
that the value of the viscosity becomes v[l + (ZQA/C)~]. Thus the value of the 
viscosity depends on the angular velocity, at  variance with the principle of 
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material indifference. Truesdell suggests that in this principle we are requiring of 
the constitutive relation a type of invariance which the equations of motion do 
not obey; in fact, the equationsfor the micro-dynamics do not, properly speaking, 
satisfy this kind of invariance either, but the disparity in the time scales involved 
is usually so great that it makes no difference. Thus, in our example, one must 
have rotation rates of the order of c/h before an appreciable effect is felt. For 
air at  standard temperature and pressure, this give periods of rotation of the 
order of 10 picoseconds, or rotation rates of 6 x 10l2 rev/min for an appreciable 
effect. We may conclude that the principle of material indifference is quite justified 
for ordinary materials under ordinary conditions. 

It is equally obvious, however, that for a turbulent flow, the principle of material 
indifference is not satisfied. Let us imagine the same experiment, say a steady 
homogeneous pure plane strain, in a steadily rotating framework (angular velocity 
(0, 0, Q)) the flow taking place in planes perpendicular to the axis of rotation. 
The equations for the Reynolds stress Rjk become 

q,j Rjk + uk,j Rji+ ~ Q ( E ~ ~ ~ R ~ ~  + ek3Ril) = - l/p(ukp,a + uip,,) - ~ V U ~ , ~ U ~ , ~ .  (A 5) 

Applying the approximations of the body of the paper, it  is a straight-forward 
calculation to show that 

~ _ _  

R,, = R23 = 0, R33 = q2(1 -P ) /3 ,  R,, = Pq”/S, 

R22 = (q2(1 -P)/3)P - 6(P2/(1 -P))(Q2q2/Wl/(1 -Pxq2l4, 

3/(1 - P )  = 1 + 211 - 6(P3/(l -P))(Q/x)2(xa2/s)21/[l -P2(~q2/421.  

R,, = (q2(1 -P)/3)[1 + 6(P”(l -P))(Q2q2/41/(1 +pxq2/€), I (A61 

with S(R,, - RZ2) = - E and 

(A 7) 

Here, /3 is a real number, 0 < /3 < 1. An examination of (A 7) in the light of this 
restriction indicates that this approximation certainly does not work for all 
combinations of S, q2, E and Q, being restricted in general to values of (Sq2/e)2 > 1 
(in steady-state flow in an inertial framework, this is observed experimentally 
to be roughly 10 however (Rose 1966), so this is no restriction) and 
(sZ/S)2 < 13/36. Using (Xq2/e)2 = 10, and taking first-order terms in (Q/X)2 

gives ,h’ N 0-14- 2.27(nj#)2+ O((Q/I!Y)~). Substitution of this value into equation 
(A 6) indicates that the effect of the rotation depends on a term of the order of 
+( Q/S)2. Thus, although our approximation has a somewhat restricted range of 
applicability (in shear flows, (Q/L3)2 N l), this range is sufficient to indicate 
that the effect of rigid rotation on the Reynolds stress is serious in most cases of 
interest. Consequently, we must discard the principle of material indifference. 

What do we have left? Let us restate (A 3) in a form which will allow us to 
make comparisons with the classical theory. If we define the position of a material 
point due to displacement by the mean motion by 

Xi(X, tit‘) = Xi+ v,(X(x, t/t”), t”)dt”, (A 8)  

Rij(x, t)  = @j(X(x+C, t / t ’ )  -X(X, tit')}, 151 > 0, t‘ < t ,  (A 9) 

SI’ - 
then it is clearly equivalent to write 
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i.e. the stress at a material point is dependent on the history of the displacement 
of other material points relative to the point in question. Finally, it is equivalent 
to write 

where XP,* = aXp/axQ. This is now in the form of a classical constitutive relation, 
before the restrictions on form due to the principle of material indifference are 
applied (and overlooking the fact that the functional extends over space, in 
violation of the principle of determinism). 

We can now apply the so-called polar decomposition theorem, which states 
that the deformation tensor F = axlax can be decomposed uniquely into two 
tensors F = RU, 

where R is an orthgonal tensor, representing a length-preserving pure rotation, 
and U is a symmetric tensor with non-negative eigenvalues, representing a pure 

(A 11) 

(A 12) 
strain* we can write FTF = UR-lRU = UU = U2, 

which is called C = U2, the right Cauchy-Green tensor (to distinguish it from the 
left Cauchy-Green tensor, formed from the decomposition F = VR, leading to 
FFT = VRR-1V = VV; i.e. rotate after deforming, rather than before), and is 
simply the metric tensor of the state at  t’ relative to that at  t. The components of 

Since the principal axes of U and those of C are the same, and the eigenvalues of 
C are the squares of those of U (which are non-negative) it is irrelevant which is 
used; C is a rational function of the components of the deformation tensor, 
while U is not, so that it is customary to use C. The rotation tensor, R, always 
has only one real eigenvector of eigenvalue = + 1: if this is taken as the 3 axis, 

cos0 sin8 0 
it may be written as 

R =  -sine COSB 0 (A 14) ) ( o  0 1 

for rotation through an angle 8. Hence, this may be replaced by a pseudo vector 
a, of magnitude Q = sin 8, aligned with the axis of rotation, given by 

Q i -  - %  2 ijk R. 3k’ (A 15) 

Knowledge of this pseudo vector will permit reconstruction of R as follows: 
Take S2/Q as an eigenvector, and generate any two other orthogonal toiit and 
each other, say X(l) and X(2): then R is given by 

Rij = (1 - S2 * S2)*(X$”X$” $. Xi2)Xr’ )  -I- Qi Qj/Q2 + eijk 52,. (A 16) 

(A 17) 

in place of (A 10). In  the classical theory of constitutive relations, the principle 
of material indifference would now be used to eliminate dependence on a. 
It must be noted that, in order for our earlier discussions to make sense, position 
x in (A 17)  must be defined relative to an inertial framework. 

Hence, we may write 

R&, t )  = Aj{C(x + 5, t/t’), a(x + 5, t/t’)), 1g1 > 0, t‘ < t 
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A 3.  Time and length scales 
Both C and 8 in expression (A 17) are dimensionless. Only one parameter is 
provided by the equations of motion, the viscosity v. Hence as discussed in $A 1, 
the boundary and initial conditions must provide a length scale and a time scale 
with which to non-dimensionalize the length and time which appear in (A 17); 
together with v a Reynolds number can be formed from these, on which we also 
expect (A 17) to be dependent. Finally, these will form a dimensional multi- 
plicative factor. There may, of course, be more than one length and time scale 
present in the flow; the ratios of the additional ones to the primary ones will then 
appear as parameters also. 

In many flows, particularly those of interest to us here, i t  is difficult to identify 
from the boundary and initial conditions the relevant length and time scales. It 
is completely equivalent to define a length and time from the statistics of the 
turbulence-these scales will bear a unique relation to the scales determined by 
the boundary and initial conditions. Thus, we may pick in a turbulent flow the 
quantities q2 and 8 as fundamental, forming a length from these, L, = q3/3%, 
and a time /3q2/2s. If we now define a new time scale r, and a new length scale 6 by 

drldt = 2@q2, agax = I/LE) (A 18) 

then (A 17) can be written as 

Xij(X, t )  = Bij(C, 7) = 424j{C(C + C’, 7/7’), Q(C + C’, 7/77? R,,), 
IC’I 2 0, 7’ 6 7, (A 19) 

which is also assumed to be a function of time- and length-scale ratios, if others 
are present. 

Of course, as long as (A 19) remains a function of the Reynolds number and/or 
other length- and time-scale ratios, the functional will not be universal; it will 
be universal only when a single length and time scale serve to describe the tur- 
bulence. When this is true, we say the turbulence is self-preserving, since its 
evolution is also governed by the same scales, and the expression (A 19) is also 
self-preserving . 

It should be pointed out that this analysis is equally applicable to other statis- 
tical quantities than Rij; for these, of course, the appropriate length and time 
scales must be chosen differently. 

A 4. Homogeneous shear; a ‘simple fluid’ 

As is done in continuum mechanics, let us consider some simple flows. Specifically, 
let us consider steady homogeneous shear, and steady homogeneous pure strain. 
The assumption of steadiness will provide considerable simplification, but will 
not eliminate the effect of unsteadiness, since (A 17) or (A 19) is expressed in 
Lagrangian co-ordinates-only trivial flows are steady in Lagrangian co - 
ordinates. 

Consider first the steady homogeneous shear. We have 

v = { U‘x2, 0, 01, (A 20) 
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which gives 
U‘(t’ - t )  

c = U‘(t‘-t) 1 + v’2(t’-t)2 :), 8 = ( 0” ), (A21) 

where f is a rather complicated function of U’(t‘ - t ) .  Thus, C is a linear combina- 
tion of three constant tensors 

i t  0 1 f(U‘@‘ - t ) )  

( 0 0 , )  ( o o u )  ( 0 0 0 )  

1 0 0  0 1 0  0 0 0  
c =  0 1 0 +U’(t’-t) 1 0 0 +rP( t ’ - t )2  0 1 0 

(A 22 = I + U’(t’ - t)A(l)  + UI2(t’ - t)2A(2) 

and 8 is proportional to a constant vector 

51 = f( U’(t’ - t ) )  0 = f( U’(t’ - t ) )X  C) 
Thus we can write 

a function of two symmetric tensors and a vector. 

A j { C ,  51) = I$j(A(l), A(2), A) = R,, (A 24) 

From the analysis of appendix B, the function in (A 24) must have the form 

Rij = asij + bA\:) + C A $ ) ~  + dA!2’ a7 + eAif)a. (A 25) 

The a,  . .., e are functions of the invariants of A(1), and of hihi, A@&hj, A$*&hj, 
A$;)hihj, A$”Aihj and of the shear U’. I n  our case, all invariants are numerical, so 
that a, . . . , e are functions only of 77’. Evaluating the various terms in (A 25) 

23 [+. 0 0 a ”) 
we have 

R..= b a+c+d+e  0 .  

This is the same behaviour as Coleman & Noll’s (1961) ‘simple fluid’, a very 
general model of a non-Newtonian fluid; the dependence on rotation does not 
introduce any greater generality. It is encouraging that we could have arrived 
at the form (A 26) on the basis of symmetry. 

(A 26) 

b 

A 5.  Viscoelasticity 

We can learn something about the viscoelastic character of turbulence by asking 
what form (A 17) or (A 19) would take if the turbulence had no memory. This is, 
of course, an artificial situation. I n  order to imagine a fluid with no memory, 
we must imagine that somehow we cause the time scale q2/2s to become shorter 
and shorter relative to some time characteristic of the mean motion. Since 42/28 
is ordinarily determined by the time scale characteristic of the mean motion, 
this is intrinsically impossible. As a thought experiment, however, it is instruc- 
tive. 

Going back to (A 17), if the fluid has no memory, R will be a function only of 
(aC/at’),=,, (&?/at‘),=,. Carrying out the operations gives 

(aqj/at‘),=, = i&+ iqi = 2sij; (an,/at’),=, = -&mi, (A 27) 
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where Sij is the strain rate tensor, and wi the vorticity vector. Now, in a homo- 
geneous deformation, in which Sij and wi are constant everywhere, we have 

Rij = KjCS, w), (A 28)  

i.e.-a function of a symmetric tensor and a vector. Referring to appendix B 
again, we see that this must have the form 

Rij = asij + bSii + CSZ, (A 29) 

where a, b and c are functions of thelinvariants of S, say S:i and S$ (since Sii = O ) ,  
as well as of the invariants w2, Sijwiwj, X$.wiwi. This has the form of a Reiner- 
Rivlin fluid (the dependence on w does not introduce any additional complexity), 

In  a steady simple shear, we have 

(A 30) 
0 0 0  0 0 0  

(A 31) 
a 

a + C(%U')~ biU'  

0 
so that 

Hence, R,, = R,,, contrary to observation. 
From. a comparison of (A 31) with (A 26), we may conclude that the inequality 

of R,, and R,, in real flows is positive evidence of the dependence of Reynolds 
stress on history, i.e. positive evidence for viscoelastic behaviour. This evidence 
is thus complementary to that of Moffatt (1  965) and Crow (1968), indicatingvisco- 
elastic behaviour for small times and small strains, since this is evidence of 
viscoelasticity when non-linearity is dominant. 

A 6. Pure homogeneous strain 

Turning now to the case of a steady, pure, homogeneous strain, we have 
q,i = Sij = Sji = const., S2 = 0. It iseasy to show that, = A(k)[ik), the right 
Cauchy-Green tensor becomes 

Rij = &{e-W'-t)s, O} = F.(S) a Hence we can write 

= aS,+bS,,+ (A 33) 

(using the results of appendix B) where a, b and c are functions of the invariants 
&'& and S:i (since Sii = 0). This has the form of a Reiner-Rivlin fluid. The form is 
the same as the one we obtained when we assumed no dependence on history; 
hence we would not be inclined to suspect effects of viscoelasticity here. I f  we 
assume that the fluid behaviour is characterized by a single time constant, how- 
ever (as in the body of the paper), we must conclude that the degree of aniso- 
tropy in response to the strain rate field is dependent on the ratio of the time 
scale to the time characterizing the strain rate. This is a viscoelastic effect, 
even though it enters implicitly rather than explicitly. 
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Appendix B. Form of a second rank tensor function of two symmetric 
second rank tensors and a vector 

B 1. Invariant basis for two symmetric second rank tensors and three vectors, 
under proper orthogonal transformations in three dimensions 

Consider three vectors and two symmetric tensors 

+, 9, 8, At1), A@). (B 1) 
An invariant basis will be formed by the components of all of these reduced 

to the principal axes of A(l) say. This would give the following numbers of in- 
dependent invariants for each quantity: 

If I(Q, I P ,  III(1) are the three principal invariants of A(1), then the requisite 
invariants relating to A(1), may be obtained from the quantities 

I(1), I P ,  III(l), QiQi, A$)QiQjY A@*QiQnj, 
sZ,$i) A$’ Qi $*, A$)2Qiy+j, qii $i) A$’#% $j $j. 

These twelve relationships should take care of all invariants of A(1), 8, c,b and 
r$. Closer examination discloses that the first six will permit determination of 
Q(U2, Q@)*, Q(3)2 (the components of 8 in the principal axes of Ail)); the addition 
of the next three will permit determination of el), qN2), qH3) to within a reJlexion 
represented by the sign ambiguity. We need one more relation to resolve this 

(B 4) 
ambiguity : 

resolves it, since this changes sign under reflexion. 

components of A@) in the principal axes of A(Q. These are 

} (B3)  

eijijk Qi #n j  $ i jk  

We now need six more relations that will permit determination of the six 

which will permit determination of all six components. Thus, the total list re- 
quired consists of (B 3)) (B 4)) and (B 5). 

B 2. Use of the invariant basis to determine the structure of a second rank 
tensor function 

In  considering the form of a second rank tensor function T~~ of the variables A(1), 
A@) and 8) we first form an invariant with two arbitrary vectors + and (I, 
T. .~#~$~ .  This invariant must now be a function of the invariant basis above (B 3), 
(B 4) and (B 5). However, since T&$~ is bilinear in + and (I, certain of the 

28 FLM 41 
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invariants in our list may be immediately eliminated, specifically, those in which 
(I appears in first degree without 9. We could not have eliminated these if we 
also had ones in which 6 appeared to first degree without (I, since the product 
would be bilinear; we have managed to pick a sufficient set of invariants, however, 
without doing this. Hence qi$i$j will be a function of 

P), 11(l), 111(1), Q,Q,, A$)Q,Qj, A$)aO,Oj, A$)QiQj, A$)’QiQj, 

Of these, the ones on the first line do not contain 4 or (I, while those on the second 
line are bilinear in them. Thus %j$,$j must be a linear function of those on the 
second line, with coefficients functions of those on the first, Hence. 

$i$i, A$)$i$j) A$)’$iPjfj, A:i’$i$j;., A$;’a$i$j) ~+jkQi$j$k*  (B 6) 

7,j = ar&+ bA$) + cA$)‘ + dA$) + eA$” + feijk Qk, (B 7) 
where a, ..., f are functions of the invariants on the first line in (B 6). 

If 7,jis a stress tensor, it must be symmetric; hence f = 0. 
Thus, referring to appendix A, the structure of the stress tensor will be the 

same whether S2 is included or not, although the invariant functions will differ. 
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